Supplementary Information ## Natural occurrence of pure nano-polycrystalline diamond from impact crater *Hiroaki Ohfuji¹, Tetsuo Irifune^{1,2}, Konstantin D. Litasov^{3,4}, Tomoharu Yamashita¹, Futoshi Isobe¹, Valentin P. Afanasiev³ & Nikolai P. Pokhilenko³ ## **Affiliations:** ¹Geodynamics Research Center, Ehime University, Matsuyama, Ehime 790-8577, Japan ²Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan ³V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch, RAS, Novosibirsk, 630090, Russia ⁴Novosibirsk State University, Novosibirsk, 630090, Russia *Corresponding author: Hiroaki Ohfuji ohfuji@sci.ehime-u.ac.jp ## This file includes: Supplementary Figures S1 to S2 **Supplementary Figure S1** | Optical microscopic images of 10 impact diamonds from the Popigai crater. Many of them are transparent and show pale yellowish to brownish yellow colors except for #02, #03 and #04 which are fully or partly opaque. **Supplementary Figure S2** | TEM images of nanocrystalline diamonds synthesized by direct conversion of graphite. (a) Typical nano-polycrystalline diamond obtained from polycrystalline graphite, which partially contains lamellar crystals (arrows)²⁷. (b) Nano-layered diamond synthesized from highly oriented pyrolitic graphite, showing distinct [111] preferred orientation along the stacking direction ²⁹.